# ALKYLTHIOPHENS AS VERSATILE SYNTHETIC PRECURSORS. PART I +

A NEW ROUTE TO 3-THIENYL ALDEHYDES AND KETONES<sup> $\top$ </sup>

J. A. CLARKE AND O. METH-COHN\*

Ramage Laboratories, Salford University, Salford M5 4WT, England. (Received in UK 5 November 1975; accepted for publication 13 November 1975)

Until recently, alkylthiophens were generally expensive or non-available compounds and, apart from one or two exceptions, were of little value as synthetic intermediates. The current availability<sup>1</sup> of a range of inexpensive homologues (e.g. 2- and 3- methyl-, 2,4- and 2,5-dimethyl- and 2- and 3-ethyl-thiophens) in large quantities, has made a study of their chemistry of renewed interest. We herein describe a simple and effective method for their conversion to aldehydes, ketones and related derivatives.

Campaigne<sup>2a</sup> has shown that the action of N-bromosuccinimide on 3-methylthiophen gives reasonable yields of 3-bromomethylthiophen. This compound may be converted into the corresponding aldehyde in moderate yield by the Sommelet reaction<sup>2b</sup> and thence to 3-thenoic acid<sup>2c</sup>. This acid is also available by aqueous dichromate oxidation of 3-methylthiophen<sup>3</sup>, while halogen-metal interconversion of 3-bromothiophen with butyllithium at low temperature offers an alternative entry to 3-substituted thiophens<sup>4</sup>. No other useful routes to 3substituted thiophens are known and the above routes all have their limitations particularly for commercial exploitation.

Bromination of thiophens with bromine is a rapid, efficient process of electrophilic substitution, in the  $\alpha$ -positions first. However, we find that this reaction may be suppressed and sometimes eliminated by the action of light and a radical catalyst (azo-bis-isobutyronitrile-AZDN) during the slow addition of bromine to a refluxing solution of an alkylthiophen in carbon tetrachloride solution (Scheme 1). Side-chain substitution occurs and, depending upon the thiophen, one, two or three bromines may be introduced before extensive ring bromination competes with this attack (Table 1).

<sup>†</sup> Dedicated to Prof. Hans Suschitzky on his 60th birthday.

$$\begin{array}{c|c} & & & \\ \hline & & \\ S \end{array} \xrightarrow{He} & & \\ \hline & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

#### Scheme 1

Conversion of the methylthiophens into their dibromomethyl derivatives followed by hydrolysis with aqueous sodium carbonate and a trace of pyridine offers an easy route to thienyl aldehydes, which are readily separated from any of the other products by steam-distillation and subsequent distillation of the products. This method is useful for 3-thenaldehyde and the method of choice for 2-chloro-3-thenaldehyde which is a useful synthetic intermediate (Scheme 2) and will be reported on fully elsewhere.



## TABLE 1

### Products from the bromination of methylthiophens

| Methyl<br>thiophens<br>(MT) | Br <sub>2</sub><br>(M) | CH2Br | Produc<br>CHBr <sub>2</sub> | cts (%)<br><sup>CBr</sup> 3 | ring-Br*                         | СНО (%)                                                     |
|-----------------------------|------------------------|-------|-----------------------------|-----------------------------|----------------------------------|-------------------------------------------------------------|
| 3-mt                        | 1                      | 47    | 19                          | _                           | 10                               |                                                             |
| "                           | 2                      | 28    | 58                          | -                           | 13                               | 30(2.5M Br <sub>2</sub> )                                   |
| 91                          | 3                      | 6     | 12                          | 7                           | 73                               |                                                             |
| 2-C1-3-MT                   | 2.1                    | 2.5   | 85                          | -                           | 10                               | 70                                                          |
| 2-Br-3-MT                   | 1                      | 66    | 12                          | -                           | -                                |                                                             |
|                             | 2                      | 13    | 36                          | -                           | 38                               | 35                                                          |
| 2,5-Br <sub>2</sub> -3MT    | 1                      | 80    | 20                          | -                           | -                                | m                                                           |
| H H                         | 2                      | 15    | 78                          | -                           | -                                | 78(as morpho-<br>line aminal,<br>m.p. 173(d) <sup>0</sup> ) |
| 2-mt                        | 2                      | 16    | -                           | - (                         | 83<br>2-Br-5-CH <sub>2</sub> Br) |                                                             |
| 2-C1-5-MT                   | 1                      | 96    | -                           | -                           | -                                |                                                             |
|                             | 2                      | 35    | 65                          | -                           | -                                |                                                             |

\*total yield of a mixture of ring and ring+side-chain brominated products.

2,5-Dibromo-3-dibromomethylthiophen is a perfectly stable distillable liquid and is of considerable interest as an intermatic (b.p.  $128^{\circ}/0.1-0.2$  mm, m.p.  $25^{\circ}$ C).

## TABLE 2

Products from the bromination of 2,5-dimethylfuran and-thiophen  $Me \begin{pmatrix} x \end{pmatrix} Me$ 

| х | Br <sub>2</sub> (M) | CH <sub>2</sub> Br | Products (<br>(CH2 <sup>Br)</sup> 2 | *)<br>CH2Br/CHBr2 |
|---|---------------------|--------------------|-------------------------------------|-------------------|
| 0 | 0.6                 | 38                 | -                                   | -                 |
|   | 1.2                 | 68                 | 21                                  | -                 |
|   | 1.8                 | 50                 | 50                                  | -                 |
| S | 1                   | 70                 | -                                   | -                 |
|   | 2                   | 8                  | 80                                  | -                 |
|   | 3                   | -                  | 20                                  | 60                |

2,5-Dimethylthiophen and 2,5-dimethylfuran under the above conditions both react successively with bromine at one methyl group then the other, this route being useful for 2,5-bis(bromomethyl)thiophen synthesis (Table 2).

3-Ethylthiophen is especially of interest since the action of 1 mole of bromine gives 3-bromoethylthiophen in 70% yield (Scheme 3). Distillation of this product from quinoline gives 3-vinylthiophen in high yield while



#### Scheme 3

hydrolysis and oxidation<sup>4</sup> yields 3-acetylthiophen, again in good yield. We thank Synthetic Chemicals Ltd. for a grant and gift of chemicals.

## REFERENCES

- 1. From Synthetic Chemicals Ltd., Four Ashes, Nr. Wolverhampton WV10 7BP.
- E. Campaigne et al., Organic Synthesis Collective Vol IV, (a) p.921,
  (b) p.918, (c) p.919.
- L. Friedman, D. L. Fishel and H. Shechter, <u>J. Org. Chem</u>., 1965, <u>30</u>, 1453.
- 4. S. Gronowitz, Arkiv Kemi, 1958, 12, 533.